Inside the IBM PC style enclosure are 5 little big boards – one of which acts as a master to control drives and printers. The monitor is an IBM terminal, which is much younger than the computer.
The other four little big boards support 4 users via serial terminals. Each of these is connected back to the master via a serial line. These cards all run Turbodos. Each provides 64kB of memory for running CP/M programs.
The master provides access to a floppy disk drive and a SCSI hard disk – emulated with a SCSI2SD.
I connected it up to a serial terminal, but I couldn’t get anything out of any external serial port. The hard disk did not spin, so it may be a lost cause.
I had no boot disks for the floppy disk, although i thought it may be possible to create some from the 8″ disk collection. Many of the disks were related to Pulsar – both CP/M and TurboDOS.
Working in the case was a little cumbersome, so I pulled the system right down to the boards:
It consists of:
1x Master LBB with STD and Floppy Drive Interfaces
4x Slave LBB (with a variety of options which are probably not used)
2x SASI/Dual Serial Boards
1x Mitsubishi M4854-342 High Density Floppy Disk Drive
1x NEC LR 56913Hard disk drive with Adaptec ACB-4000 SASI adapter
1x Sysquest removable disk drive with Adaptec ACB-4000 SCSI adapter (external to computer and mounted on it’s own baseplate)
There is a lot of variation amongst the slaves. Perhaps from card swaps over the years, or perhaps this machine was put together using whatever was in stock. Serial port connectors can be straight or right-angled, a bare header, or a shrouded header, sometimes with release levers.
Each of the slaves is connected via serial to the SASI/Serial cards. The master owns the bus and therefore the SASI/Serial cards. The slaves must not attempt to use the STD bus, so where the interface is loaded it has to be nobbled with track cuts.
There seems to be no reason why the slaves need to be in the unit – they could just as easily be located elsewhere but there is not a lot to be gained as either way a serial connection is required.
The serial ports on the master were used for printers.
I tested each of the boards with an MP7A Monitor ROM in a different chassis.
The master little big board does come up ok, so probably it was silent at switch on because that’s how the boot ROM rolls.
Two of the slaves were ok, but the other two were not working. One had a bad solder joint and the other had lost 12V connectivity because the track is very close to the board edge was severed. The damage would have occurred when I levered the board out of the backplane (there was no other way).
I could not get the master to boot from the floppy disk, even after adjusting the phase-locked loop as per Pulsar instructions. I parked that board and used a spare, which did boot.
From there the configuration tool was used to setup the slaves. There are a lot of questions about each slave. I took the easy options with automatic login of the privileged user.
The system has two SASI cards that I thought might accept a SCSI2SD card.
The drive configuration comes up in two places – firstly in configuration of the master or single user system configuration program, and then again when the drive is formatted.
In both cases, the following information is required:
SASI card number: 0 worked for one card but I tried multiple numbers with the other card without success
Drive Number: It allows 1 or 2. 1 seemed to be SCSI ID 0.
The configuration also deals with partitioning. The default partition size is 4MB which is the optimal size. With large drives, that’s a bit of a nuisance because you need a lot of partitions. Having some optimal 4MB partitions and a larger sub-optimal partition seemed like a reasonable compromise.
The drive selection gave some geometry, but the specifics probably don’t matter with a SCSI2SD. The SCSI2SD was set up with a simple 32MB disk at ID 0 with 512B sectors. Termination needs to be on.
The process went like this:
Create a fresh single user floppy disk
Run the Configuration program and select modify
Set up the hard disk as above
Format the hard disk using HFORM30 with the same disk parameters
At this point the new drives were available starting at E: but when the directory was listed it appeared the disk was read only and the directory looked corrupted. It didn’t seem to matter if the format was done first and then the configuration.
The “Creating Boot Tracks” section of the System Initialisation Procedure mentioned a program called ERASEDIR but really just in the context of making faster hashed entries. Running this program on each of the drives resolved the issue. It says to run this after BOOTDISC (which writes the boot tracks).
So:
Run BOOTDISK and write to E: – only the first partition can be a boot partition. It can also be written to A:.
Run ERASEDIR on each of the new drives from e: to the last one.
Copy all the files from the A: to E: using DO DCOPY A: E:
When the system is powered up, it looks for a bootable drive. If a boot floppy is in A: it will use it; otherwise it will boot using E:.
Programs were then copied on to the solid state disk from a gotek. TurboDOS supports multiple user areas so the these can be used as directories. User 0 files marked a global can be accessed by all users.
All users are assumed to be using Televideo 950 terminals. A lot of the software on the 8″ disks was configured to use this popular terminal.
Pulsar was an Australian computing company located in Melbourne, Victoria. They made STD cards and computings systems based on the STD bus and often using TurboDOS.
TurboDOS is a multiuser/multiprocessor operating system that can execute CP/M programs.
Eight Z80 processors and two 80186 processors share an 8″ floppy drive and a SASI/SCSI hard disk, supporting 9 concurrent users. Each Z80 user gets their own 64k in which to run CP/M-80 programs, while the lucky 186 user scores 256kB in which to run CP/M-86 programs.
The master board, a 80186 board, loads the operating system from disk and, once it is up, it transfers the operating system to each of the slave cards.
All the rack-mounted cards are bona fide eighties cards. The rack and the 8″ drive are also of the time. The re-construction is new. I was able to find only very scant details of the Pulsar 9000, but i did have a complete set of cards and some software handbooks. It looked like a project!